

Sparse Matrices Beyond Solvers - Graphs, Biology, and Machine Learning (v2)

Aydın Buluç Computational Research Division, LBNL EECS Department, UC Berkeley

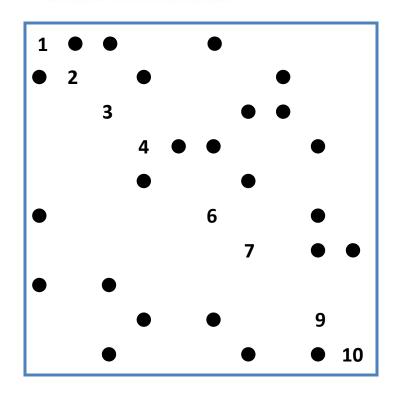
CS Summer Student Program July 16, 2020

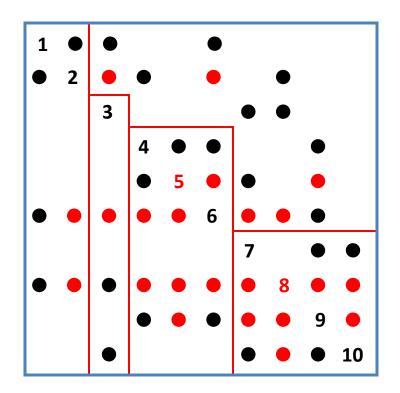
Sparse Matrices

"I observed that most of the coefficients in our matrices were zero; i.e., the nonzeros were 'sparse' in the matrix, and that typically the triangular matrices associated with the forward and back solution provided by Gaussian elimination would remain sparse if pivot elements were chosen with care"

 Harry Markowitz, describing the 1950s work on portfolio theory that won the 1990 Nobel Prize for Economics

Sparse Matrices





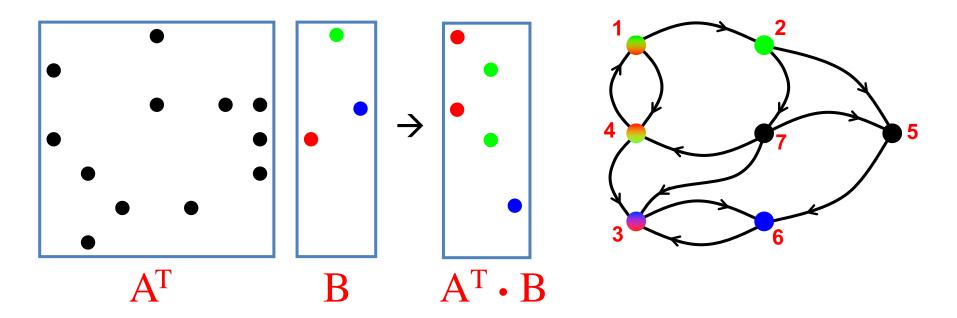
Original matrix A

Factors L+U

Original: Ax = b (hard to solve directly)

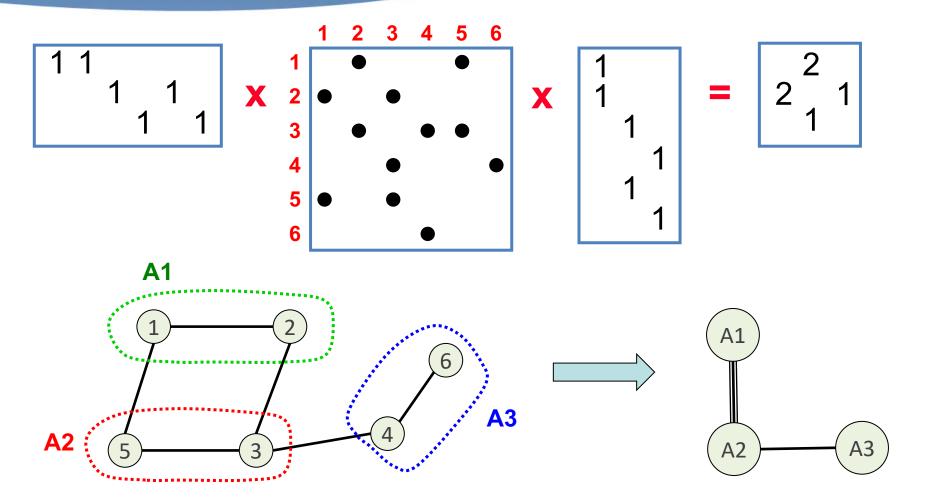
Factored: LUx = b (solvable by direct substitution)

Graphs in the language of matrices



- Sparse array representation => space efficient
- Sparse matrix-matrix multiplication => work efficient
- Three possible levels of parallelism: searches, vertices, edges
- Highly-parallel implementation for Betweenness Centrality*
 - *: A measure of influence in graphs, based on shortest paths

Graph coarsening via sparse matrix-matrix products



Aydin Buluç and John R. Gilbert. Parallel sparse matrix-matrix multiplication and indexing: Implementation and experiments. *SIAM Journal of Scientific Computing (SISC), 2012.*

The GraphBLAS effort

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology), Jon Berry (Sandia National Laboratory), Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee), Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert (University of California at Santa Barbara), Joseph Gonzalez (University of California at Berkeley), Bruce Hendrickson (Sandia National Laboratory), Jeremy Kepner (Massachusetts Institute of Technology), Charles Leiserson (Massachusetts Institute of Technology), Andrew Lumsdaine (Indiana University), David Padua (University of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation), Andrew Yoo (Lawrence Livermore National Laboratory)

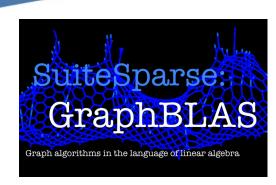
Abstract-- It is our view that the state of the art in constructing a large collection of graph algorithms in terms of linear algebraic operations is mature enough to support the emergence of a standard set of primitive building blocks. This paper is a position paper defining the problem and announcing our intention to launch an open effort to define this standard.

- The GraphBLAS Forum: http://graphblas.org
- Graphs: Architectures, Programming, and Learning (GrAPL @IPDPS): http://hpc.pnl.gov/grapl/

SuiteSparse::GraphBLAS

- From Tim Davis (Texas A&M)
- First conforming implementation of C API
- Features [1]:
 - 960 semirings built in; also user-defined semirings
 - Fast incremental updates using non-blocking mode and "zombies"
 - Several sparse data structures & polyalgorithms under the hood
- Already multithreaded [2]
- Performance on graph benchmarks (e.g. triangles, k-truss) comparable to highly-tuned custom C code
- Included in Debian and Ubuntu Linux distributions
- Used as computational engine in commercial RedisGraph product

[1] Davis, Timothy A. "Algorithm 1000: SuiteSparse: GraphBLAS: Graph Algorithms in the Language of Sparse Linear Algebra." ACM Transactions on Mathematical Software (TOMS) 45.4 (2019): 44. [2] Aznaveh, Mohsen, et al. "Parallel GraphBLAS with OpenMP." CSC20, SIAM Workshop on Combinatorial Scientific Computing. SIAM. 2020.



GraphBLAS C API Spec (http://graphblas.org)

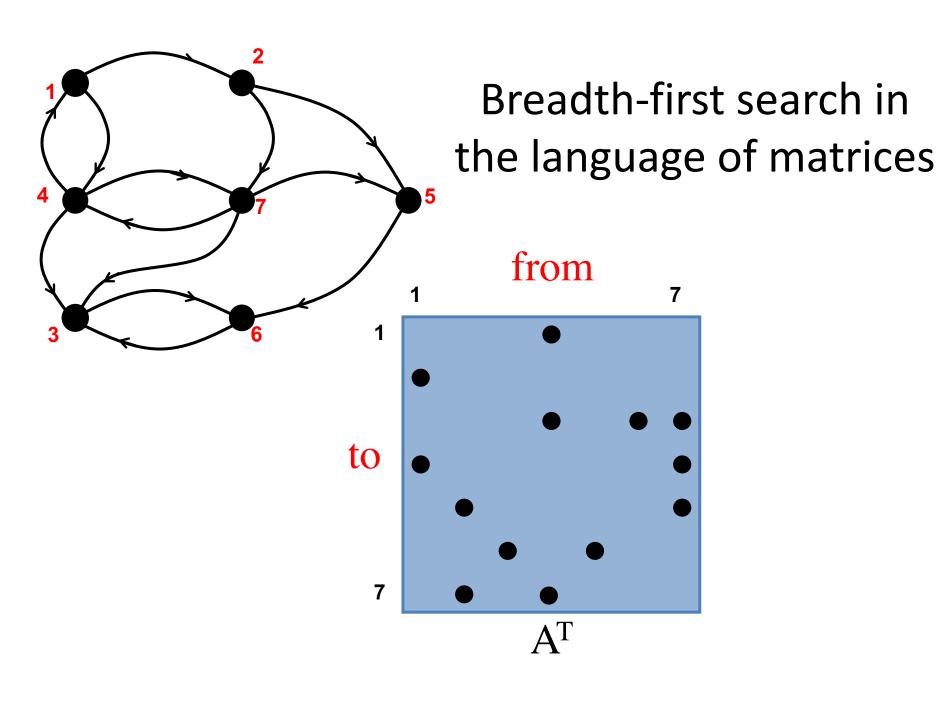
- Goal: A crucial piece of the GraphBLAS effort is to translate the mathematical specification to an actual Application Programming Interface (API) that
 - i. is faithful to the mathematics as much as possible, and
 - ii. enables efficient implementations on modern hardware.
- Impact: All graph and machine learning algorithms that can be expressed in the language of linear algebra
- Innovation: Function signatures (e.g. mxm, vxm, assign, extract), parallelism constructs (blocking v. non-blocking), fundamental objects (masks, matrices, vectors, descriptors), a hierarchy of algebras (functions, monoids, and semiring)

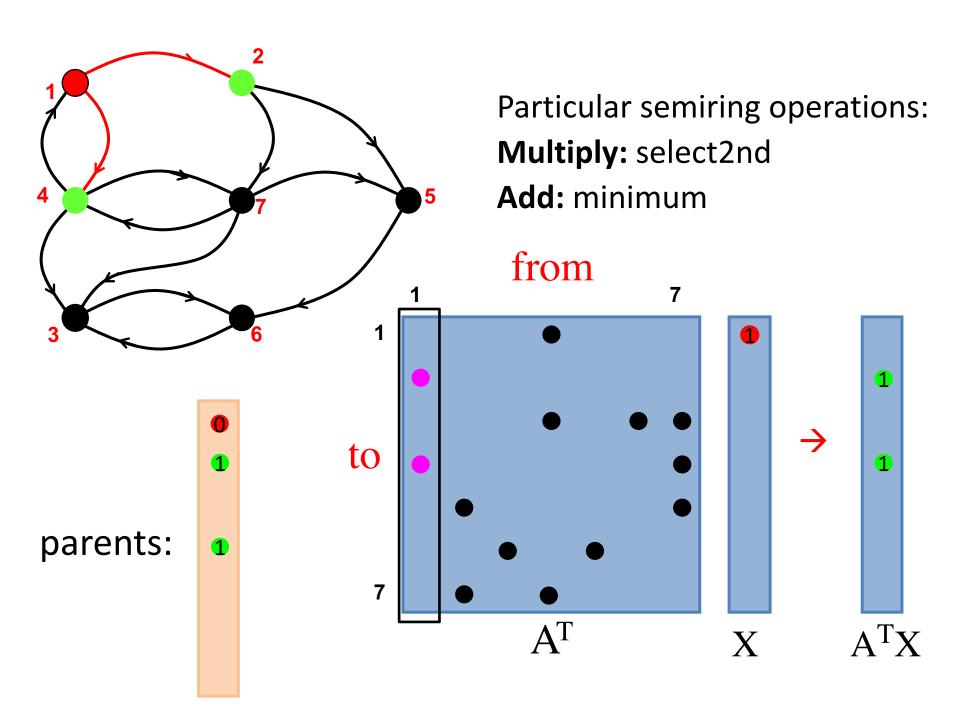
```
*C,
                                                               // destination
GrB info GrB mxm(GrB Matrix
                     const GrB Matrix
                                                     Mask,
                     const GrB BinaryOp
                                                     accum,
                     const GrB Semiring
                                                               C(\neg M) \bigoplus = A^{\mathsf{T}} \bigoplus . \bigotimes B^{\mathsf{T}}
                                                     op,
                     const GrB Matrix
                                                     Α,
                     const GrB Matrix
                                                     В
                 [, const Descriptor
                                                     desc]);
```

Examples of semirings in graph algorithms

Real field: (R, +, X)	Classical numerical linear algebra		
Boolean algebra: ({0 1}, , &)	Graph connectivity		
Tropical semiring: (R U {∞}, min, +)	Shortest paths		
(S, select, select)	Select subgraph, or contract nodes to form quotient graph		
(edge/vertex attributes, vertex data aggregation, edge data processing)	Schema for user-specified computation at vertices and edges		
(R, max, +)	Graph matching &network alignment		
(R, min, times)	Maximal independent set		

- Shortened semiring notation: (Set, Add, Multiply). Both identities omitted.
- Add: Traverses edges, Multiply: Combines edges/paths at a vertex
- Neither add nor multiply needs to have an inverse.
- Both add and multiply are associative, multiply distributes over add



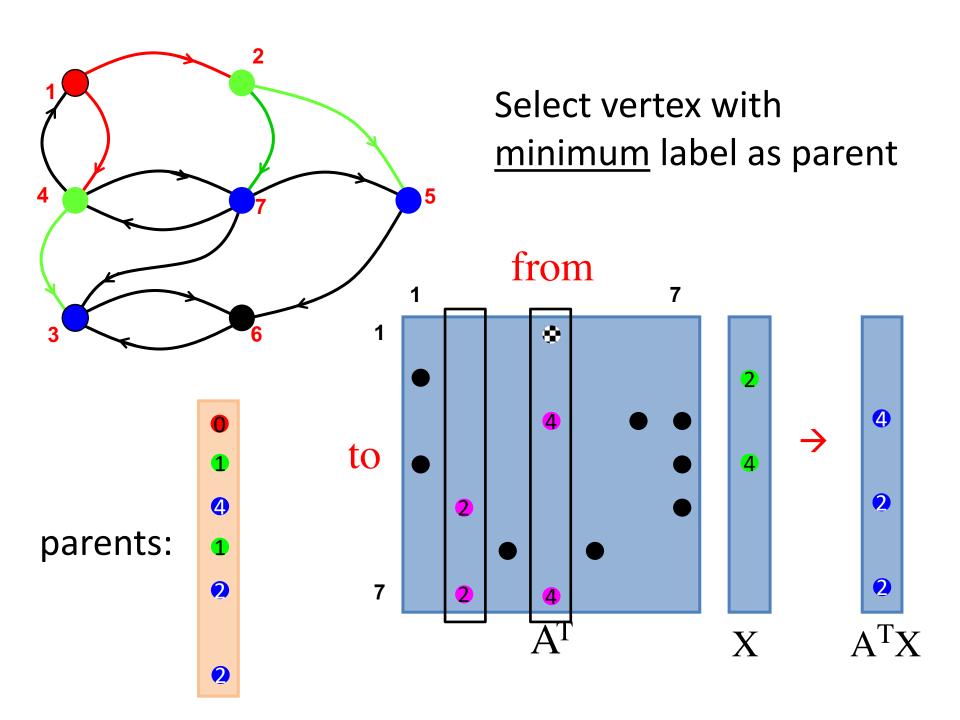


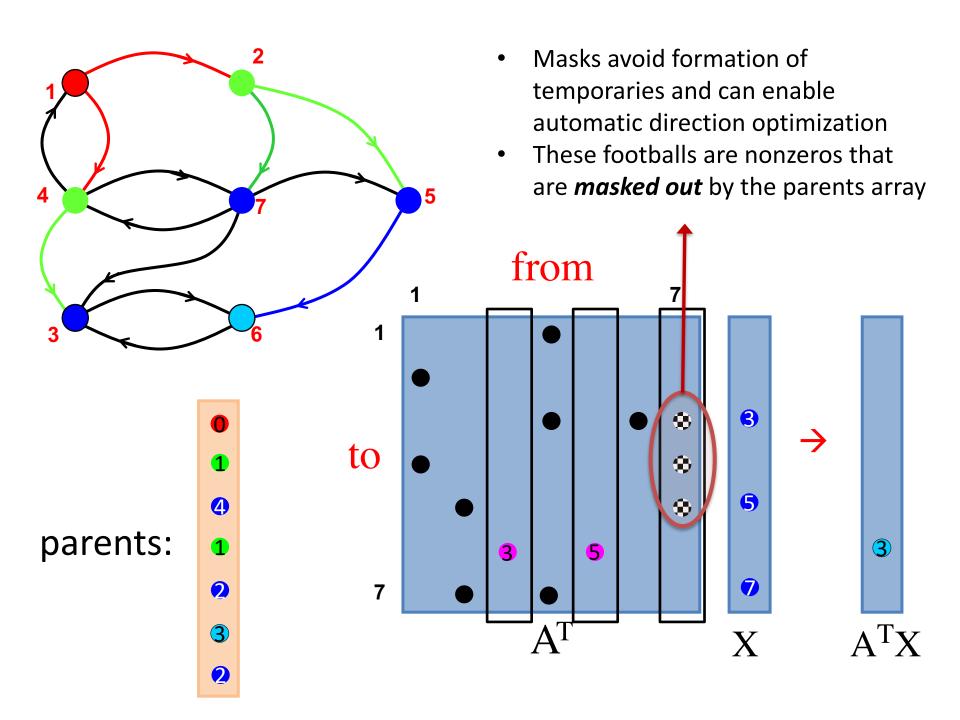
Input sparsity

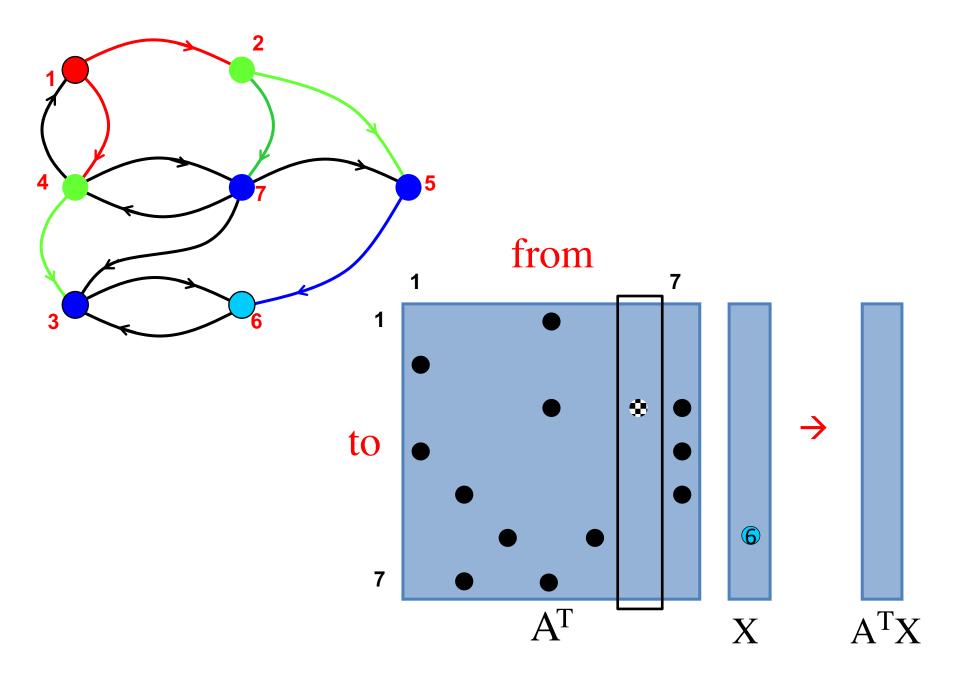
- What was the cost of that A^Tx in the previous slide?
- If x is dense, it is O(nnz(A)) = O(m) where m=#edges
- If x is sparse, it is

$$\sum_{i:x_i\neq 0} nnz(A_{i:})$$

- Over all iterations of BFS, the cost sums up to O(nnz(A)), because no x_i appears twice in the input.
- Note that this is optimal for conventional (top-down) BFS
- Many people outside the community miss this observation and *mistakenly think* SpMV based BFS is suboptimal by a factor of the graph diameter.







GraphBLAST

- First "high-performance" GraphBLAS implementation on the GPU
- Optimized to take advantage of both input and output sparsity
- Automatic direction-optimization through the use of masks
- Competitive with fastest GPU (Gunrock) and CPU (Ligra) codes
- Outperforms multithreaded SuiteSparse::GraphBLAS

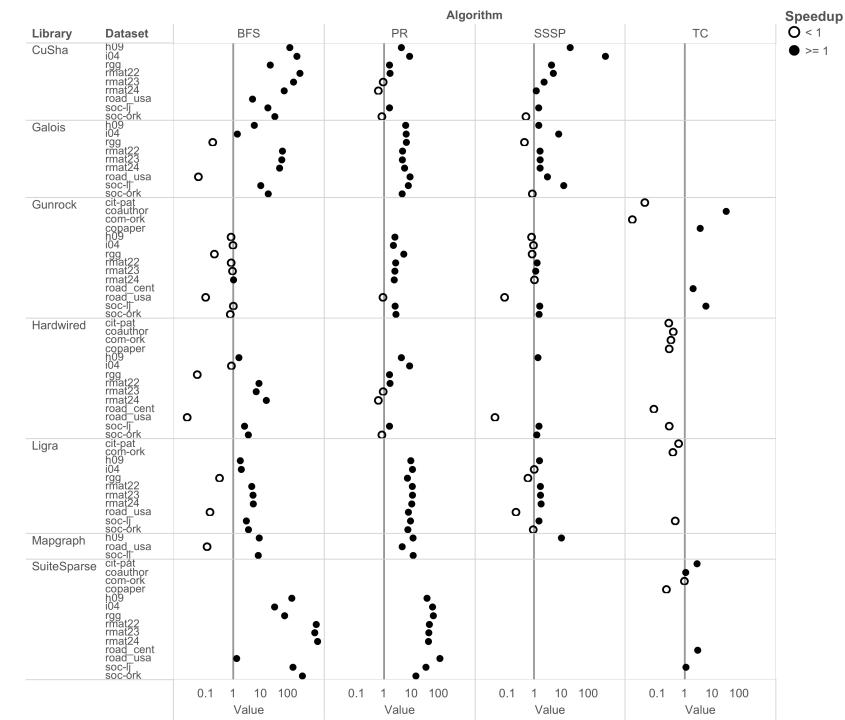
Design principles:

- 1. Exploit input sparsity => direction-optimization
- 2. Exploit output sparsity => masking
- 3. Proper load-balancing => key for GPU implementations

Extensively evaluated on (more implemented, google for github repo)

- Breadth-first-search (BFS)
- Single-source shortest-path (SSSP)
- PageRank (PR)
- Triangle counting (TC)

https://github.com/gunrock/graphblast



Kernel methods in Machine Learning

A **kernel** is a function that

Implicitly transforms raw data into highdimensional feature vectors via a **feature map**; and then Returns an **inner product** between the feature vectors.

Must be **positive-definite.**

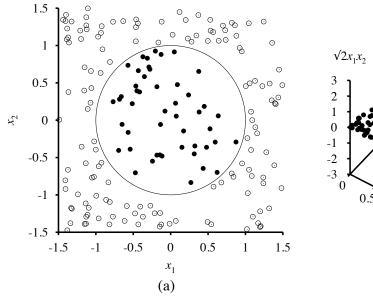
A **kernel** is useful for

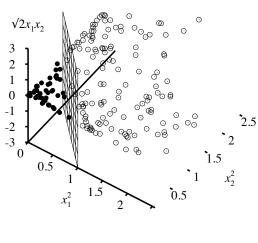
Factor out knowledge on data representation from downstream algorithms,

Exploit **infinite dimensionality and nonlinear** feature spaces.

Kernels are used in

Support vector machine (SVM), Gaussian process regression (GPR), Kernel principal component analysis (kPCA), etc.





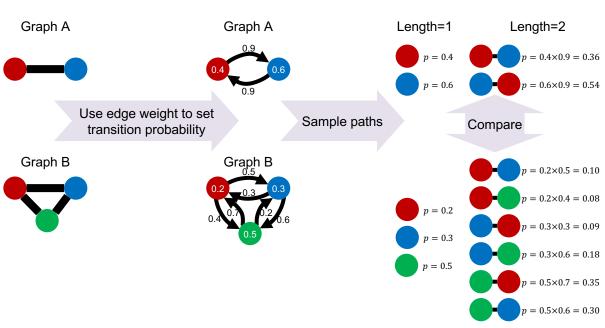
(b)

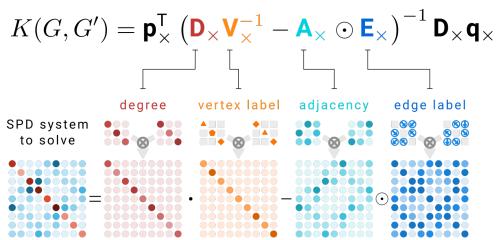
Figure source: Russell & Norvig

The circular decision boundary in 2D (a) becomes a linear boundary in 3D (b) using the following transformation: $\phi(x_1, x_2) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$

Marginalized Graph Kernels

The inner product between two graphs is the statistical average of the inner product of simultaneous random walk paths on the two graphs.



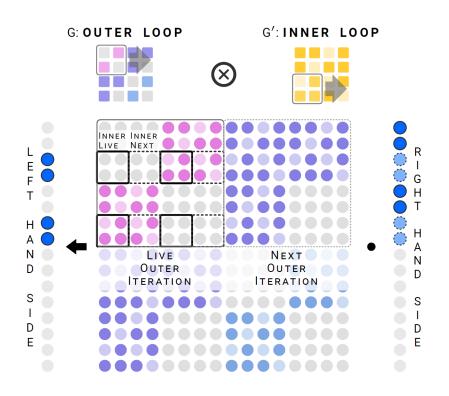


The marginalized graph kernel in linear algebra form represents a modified graph Laplacian

Solving the Graph Kernel PSD system

Streaming Kronecker matrix-vector multiplication

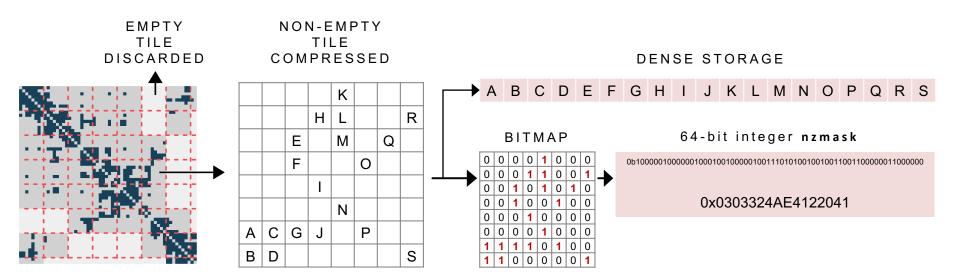
- Regenerates the product linear system on the fly by streaming 8-by-8 tiles.
- Tiles staged in shared memory.
- Trade FLOPS for GB/s, but asymptotic arithmetic complexity stays the same.



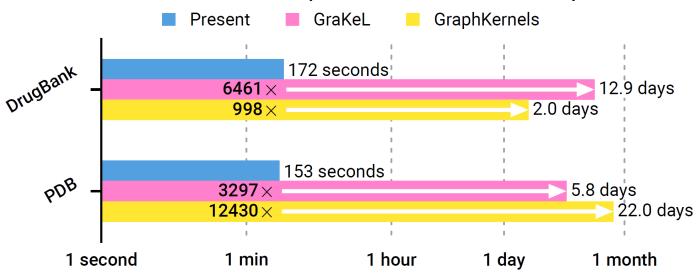
```
1 function CG4GK(\mathbf{d}, \mathbf{d}', \mathbf{v}, \mathbf{v}', \mathbf{A}, \mathbf{A}', \mathbf{E}, \mathbf{E}', \mathbf{q}, \mathbf{q}')
                       \mathbf{M} \leftarrow \mathbf{diag} \left[ (\mathbf{d} \otimes \mathbf{d}') \odot (\mathbf{v} \overset{\kappa}{\otimes} \mathbf{v}')^{-1} \right]
                                                                                                                                                                                                            +
                                                                                                                                                                                                            +
                        \mathbf{x} \leftarrow \mathbf{0}
                        \mathbf{r} \leftarrow (\mathbf{d} \otimes \mathbf{d}') \cdot (\mathbf{q} \otimes \mathbf{q}')
                                                                                                                                                                                                         \mathbb{N} \cdot \mathbb{I}
                        \mathbf{z} \leftarrow \mathbf{v} \overset{\kappa}{\otimes} \mathbf{v}'
                                                                                                                                                                                                            +
                                                                                                                                                                                                            +
                        \mathbf{p} \leftarrow \mathbf{z}
                        \rho \leftarrow \mathbf{r}^\mathsf{T} \mathbf{z}
                                                                                                                                                                                                            ŀ
                       repeat
                                    \mathbf{a} \leftarrow (\mathbf{d} \otimes \mathbf{d}') \odot (\mathbf{v} \overset{\kappa}{\otimes} \mathbf{v}')^{-1} \cdot \mathbf{p}
                                                                                                                                                                                                        \mathbb{N} \cdot \mathbb{I}
                                                                                                                                                                                                         \mathbf{z}\cdot\mathbf{l}
                                             +(\mathbf{A}\otimes\mathbf{A}')\odot(\mathbf{E}\overset{\kappa}{\otimes}\mathbf{E}')\cdot\mathbf{p}
10
                                                                                                                                                                                                            ľ·I
                                   \alpha \leftarrow \rho/(\mathbf{p}^\mathsf{T}\mathbf{a})
11
                                   \mathbf{x} \leftarrow \mathbf{x} + \alpha \mathbf{p}
                                                                                                                                                                                                            +
                                                                                                                                                                                                            +
13
                                     \mathbf{r} \leftarrow \mathbf{r} - \alpha \mathbf{a}
                                    \mathbf{z} \leftarrow \mathbf{M}^{-1}\mathbf{r}
                                                                                                                                                                                                            +
 14
                                   \rho' \leftarrow \mathbf{r}^\mathsf{T} \mathbf{z}
                                                                                                                                                                                                            I'- I
 15
                                   \beta \leftarrow \rho'/\rho
                                                                                                                                                                                                            +
                                    \mathbf{p} \leftarrow \mathbf{z} + \beta \mathbf{p}
 17
                                     \rho \leftarrow \rho'
 18
                       until \mathbf{r}^\mathsf{T}\mathbf{r} < \epsilon
 19
 20
                       return x
```

Exploiting Sparsity

- Most discrete systems have natural sparsity (e.g. not all atoms are connected).
- 2-level sparsity exploitation:
 - i. Outer level: retain only non-empty tiles
 - ii. Inner level: use bitmap + compact storage format
- Packing into compact format: on CPU as a preprocessing step.
- Unpacking for Streaming Kronxv: on GPU using bit magic + warp intrinsics
- Partition-based graph ordering reduces # non-empty tiles
 - ► Cost easily amortized because we reorder each graph, not their product



Performance of the Graph Kernel



GraKeL: Cython, multi-threading

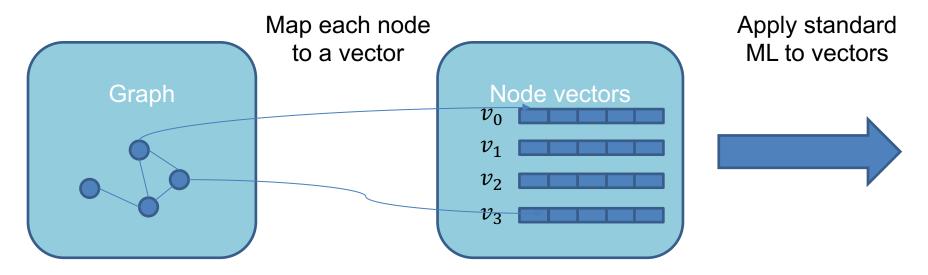
GraphKernels: Python, no parallelization

Yu-Hang Tang, Oguz Selvitopi, Doru Popovici, and Aydin Buluç. A high-throughput solver for marginalized graph kernels on GPU. In Proceedings of the IPDPS, 2020.

Graph Neural Networks

Can be used to classify unlabeled nodes in graph Want to map nodes to feature vectors

Embed properties of graph, e.g. connectivity, in vectors per node



How do we compute these vectors? With a GNN

GNN Training

- Each node is initialized with a feature vector
 - $-H^0$ has initial feature vector per node $(n \times f)$
- Each node aggregates vectors of its neighbors, applies a weight
- Each layer computes gradients

```
for i = 1 \dots E A \in n \times n

for l = 1 \dots L

Z^{1} = A^{T} * H^{1-1} * W^{1} H^{l} \in n \times f^{l}

...

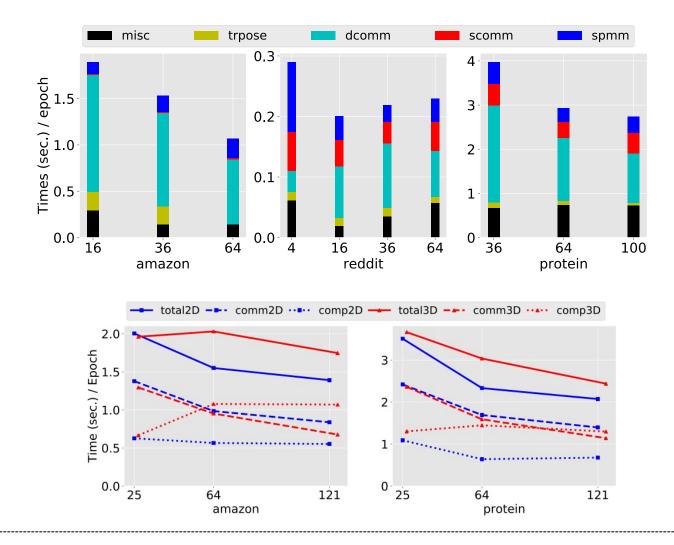
for l = L-1 \dots 1

G^{1} = A * G^{1+1} * (W^{1+1})^{T} \odot \sigma'(Z^{1}) G^{l} \in n \times f^{l}

dH/dW = (H^{1-1})^{T} * A * G^{1} W^{l} \in f^{l-1} \times f^{l}
```

 A is sparse and f << n, so the main workhorse is SpMM (sparse matrix times tall-skinny dense matrix)

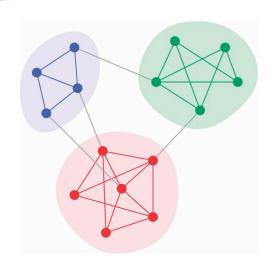
Communication avoidance in GNN Training



Alok Tripathy, Katherine Yelick, Aydın Buluç. Reducing Communication in Graph Neural Network Training. arXiv

The Markov Cluster Algorithm (MCL)

Widely popular and successful algorithm for discovering clusters (e.g. protein families) in protein interaction and protein sequence similarity networks



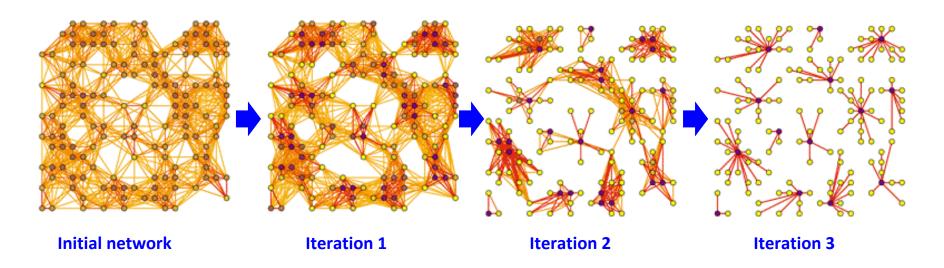
The number of edges or higher-length paths between two arbitrary nodes in a cluster is greater than the number of paths between nodes from different clusters

Random walks on the graph will frequently remains within a cluster

The algorithm computes the probability of random walks through the graph and removes lower probability terms to form clusters,

The Markov Cluster Algorithm (MCL)

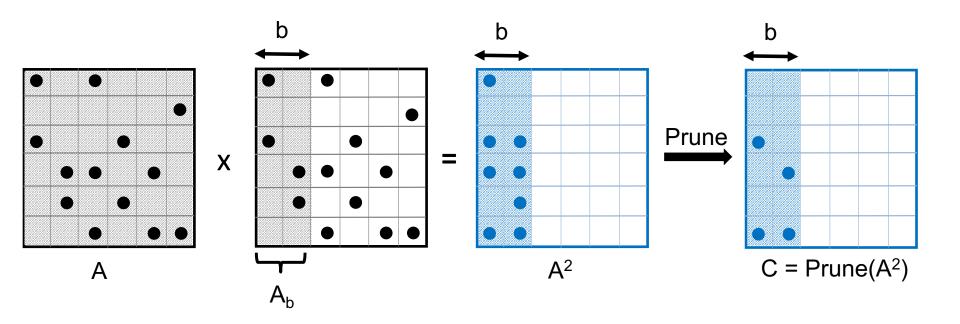
Step 2 (Inflation): taking powers entry-wise



At each iteration:

Step 1 (Expansion): Squaring the matrix while pruning (a) small entries, (b) denser columns
Naïve implementation: sparse matrix-matrix product (SpGEMM), followed by column-wise top-K selection and column-wise pruning

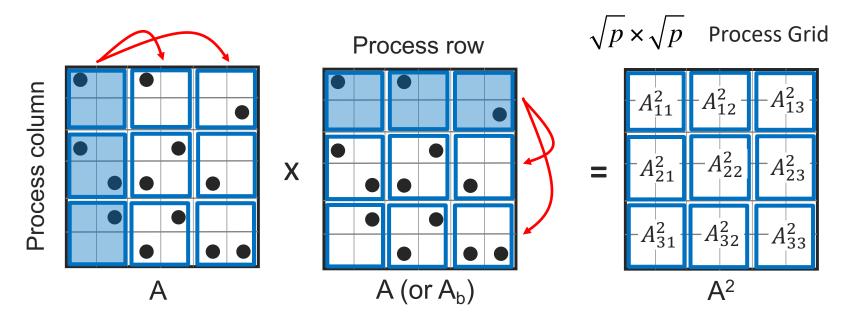
A combined expansion and pruning step



- □ b: number of columns in the output constructed at once
 - Smaller b: less parallelism, memory efficient (b=1 is equivalent to sparse matrix-sparse vector multiplication used in MCL)
 - Larger b: more parallelism, memory intensive

HipMCL: High-performance MCL

- MCL process is both computationally expensive and memory hungry, limiting the sizes of networks that can be clustered
- HipMCL overcomes such limitation via sparse parallel algorithms.
- Up to 1000X times faster than original MCL with same accuracy.



A. Azad, G. Pavlopoulos, C. Ouzounis, N. Kyrpides, A. Buluç; HipMCL: a high-performance parallel implementation of the Markov clustering algorithm for large-scale networks, *Nucleic Acids Research*, 2018

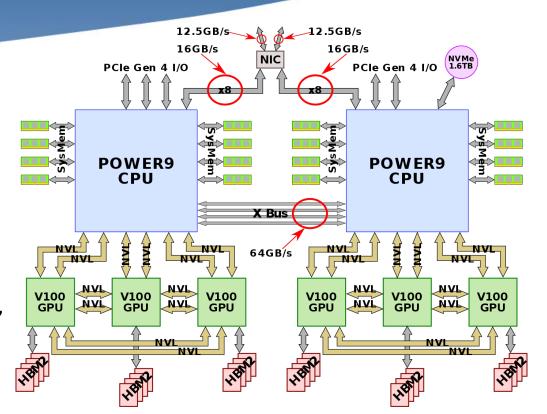
HipMCL on large networks

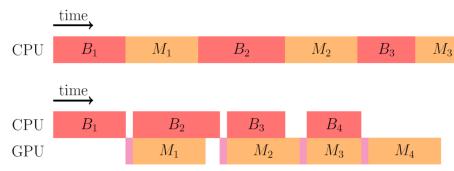
Data	Proteins	Edges	#Clusters	HipMCL time	platform
Isolate-1	47M	7 B	1.6M	1 hr	1024 nodes Edison
Isolate-2	69M	12 B	3.4M	1.66 hr	1024 nodes Edison
Isolate-3	70M	68 B	2.9M	2.41 hr	2048 nodes Cori KNL
MetaClust50	282M	37B	41.5M	3.23 hr	2048 nodes Cori KNL

MCL can not cluster these networks

HipMCL on Supercomputers with accelerators

- Recent top supercomputers are all accelerated (e.g. with GPUs)
- This is what a ORNL Summit node looks like
- There are 4608 such nodes in the system
- Challenges: (1) Utilizing all GPUs,
 (2) hiding the communication





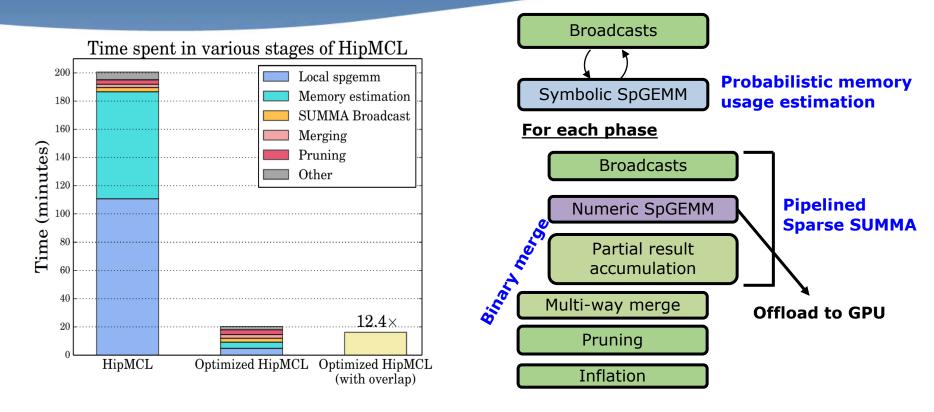
Pipelined Sparse SUMMA

 B_{4}

 M_4

Joint CPU-GPU distributed memory expansion of MCL algorithm

HipMCL on Supercomputers with accelerators

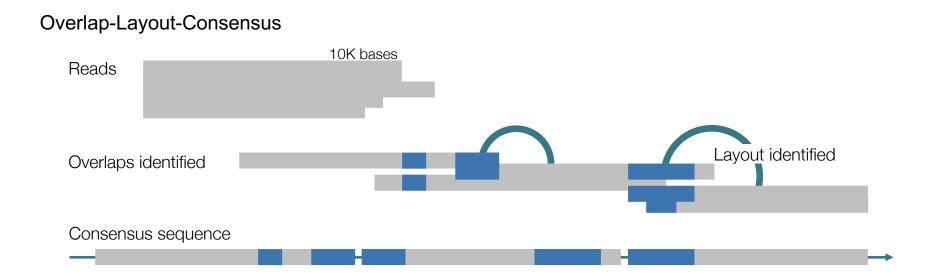


Other changes to HipMCL for the CPU-GPU workflow:

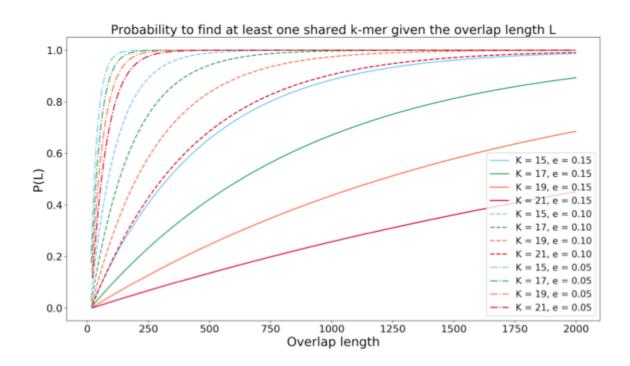
- Randomized memory estimation algorithm avoids symbolic phase
- New eager binary merging reduces memory footprint
- Integration of a much faster hash-based CPU SpGEMM algorithm

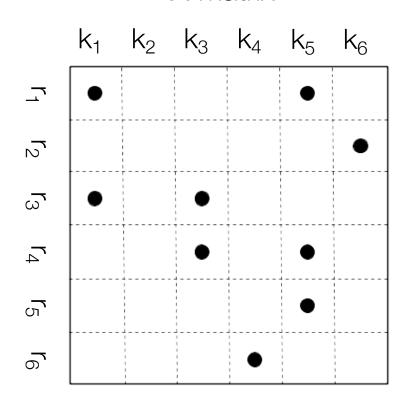
O. Selvitopi, M.T. Hussain, A. Azad, and A. Buluç. Optimizing high performance Markov clustering for preexascale architectures. IPDPS, 2020

- Long reads from PacBio and Oxford Nanopore have the potential to revolutionize de-novo assembly
- Overlap-Consensus-Layout paradigm is more suitable than de Bruijn graph paradigm.
- Overlapping is the most computationally expensive step.



- We need to quickly determine pairs of reads that are *likely to* overlap, without resorting to O(n²) comparisons
- If two reads do not share any subsequence of length k (aka a k-mer) for a reasonably short k, then they are unlikely to overlap





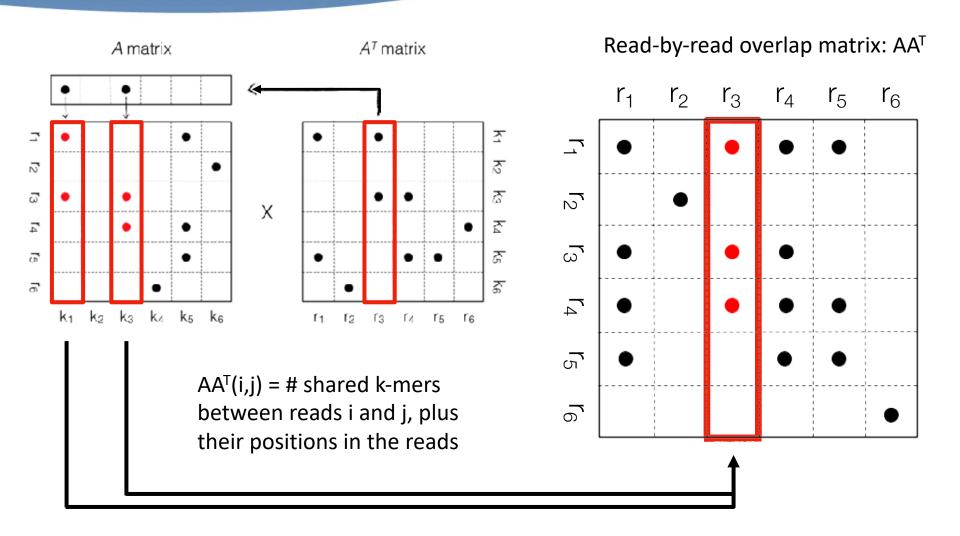
- Suppose you have counted kmers and only retained *reliable* k-mers
- Now you can generate this read-by-kmer sparse matrix A
- These are all linear time computations so far

 $r_i = i^{th} read$

 $k_j = j^{th}$ reliable k-mer

A(i,j) = presence of j^{th} reliable k-mer in i^{th} read, plus its position

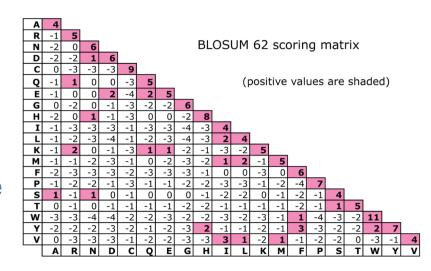
Giulia Guidi, Marquita Ellis, Daniel Rokhsar, Kathy Yelick, Aydın Buluç, BELLA: Berkeley Efficient Long-read to Long-Read Overlapper and Aligner, Biorxiv, 2018

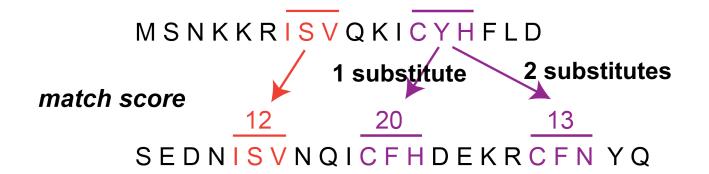


Use any fast SpGEMM algorithm, as long as it runs on arbitrary semirings

SpGEMM for many-to-many protein alignment

- Idea similar to BELLA, but removing the exact match restriction
- For homology detection, need to catch weaker signal (~30% ANI)
- K-mers with substitutes may be more valuable than exact matches!





SpGEMM for many-to-many protein alignment

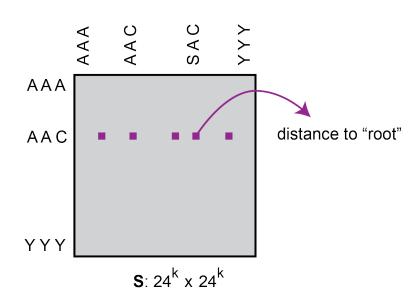
Introduce new sparse matrix S

- Contains substitution information
- Each entry
 - Substitution cost

Exact k-mers \rightarrow C=AA^T

Substitute k-mers → C=ASA^T

New semiring



Oguz Selvitopi, Saliya Ekanayake, Giulia Guidi, Georgios Pavlopoulos, Ariful Azad, and Aydın Buluç. Distributed Many-to-Many Protein Sequence Alignment Using Sparse Matrices. SC'20.

Acknowledgments

Ariful Azad, Tim Davis, Saliya Ekanayake, Marquita Ellis, John Gilbert, Giulia Guidi, Jeremy Kepner, Nikos Krypides, Tim Mattson, Scott McMillan, Jose Moreira, John Owens, Georgios Pavlopoulos, Dan Rokhsar, Oguz Selvitopi, Yu-Hang Tang, Alok Tripathy, Carl Yang, Kathy Yelick.

- My Research Team: http://passion.lbl.gov
- Our (new) Youtube Channel: http://shorturl.at/lpFRY
- The GraphBLAS Forum: http://graphblas.org